Otego - TEGs

Thermoelectric generators (TEGs) can be manufactured in printed form due to recent developments in materials research and novel architectures. With the use of thermoelectric inks made of organic semiconductors or nanocomposites, TEGs can be mass produced at low cost in a roll-to-roll process. The efficiency with which a TEG can convert thermal energy into electrical energy depends largely on the Seebeck coefficient, electrical conductivity and thermal conductivity of the printed layers. Based on the many years of experience of the Lichttechnisches Institut (LTI) in the field of organic semiconductors and printed electronics, research activities have been extended in the direction of printed thermoelectrics.
Key technology here is the development of novel printable materials with high thermoelectric efficiency. Due to the scalability of the manufacturing process, it is possible, among other things, to produce large-area TEGs that enable the use of waste heat on a larger scale.
In this context, the thermoelectrics group conducts research on novel thermoelectric materials, TEG device architectures and integrated TEG systems. Design and simulation of thermoelectric components are the focus of the group.


High Power Density AgSe/SbBiTe‐Based Fully Printed Origami Thermoelectric Module for Low‐Grade Thermal Energy Harvesting
Franke, L.; Rösch, A. G.; Khan, M. I.; Zhang, Q.; Long, Z.; Brunetti, I.; Joglar, M. N.; Lara, A. M.; Simão, C. D.; Geßwein, H.; Nefedov, A.; Eggeler, Y. M.; Lemmer, U.; Mallick, M. M.
2024. Advanced Functional Materials, Art.-Nr.: 2403646. doi:10.1002/adfm.202403646
High‐Sensitivity Flexible Thermocouple Sensor Arrays Via Printing and Photonic Curing
Mallick, M. M.; Franke, L.; Rösch, A. G.; Hussein, M.; Long, Z.; Eggeler, Y. M.; Lemmer, U.
2024. Advanced Functional Materials, 34 (20), Art.-Nr.: 2301681. doi:10.1002/adfm.202301681
Optimizing printed thermoelectric generators with geometry and processibility limitations
Rösch, A. G.; Franke, L.; Mallick, M. M.; Lemmer, U.
2023. Energy Conversion and Management, 279, Art.-Nr.: 116776. doi:10.1016/j.enconman.2023.116776
Inorganic‐based printed thermoelectric materials and devices
Sarbajna, A.; Rösch, A. G.; Franke, L.; Lemmer, U.; Mallick, M. M.
2022. Advanced Engineering Materials, 25 (2), Art.Nr. 2200980. doi:10.1002/adem.202200980
Photonic Curing Enables Ultrarapid Processing of Highly Conducting β-CuSe Printed Thermoelectric Films in Less Than 10 ms
Mallick, M. M.; Franke, L.; Rösch, A. G.; Geßwein, H.; Eggeler, Y. M.; Lemmer, U.
2022. ACS Omega, 7 (12), 10695–10700. doi:10.1021/acsomega.2c00412
Ultra-flexible β-Cu2-δSe-based p-type printed thermoelectric films
Mallick, M. M.; Sarbajna, A.; Rösch, A. G.; Franke, L.; Geßwein, H.; Eggeler, Y. M.; Lemmer, U.
2022. Applied materials today, 26, Art.Nr. 101269. doi:10.1016/j.apmt.2021.101269
High Figure‐of‐Merit Telluride‐Based Flexible Thermoelectric Films through Interfacial Modification via Millisecond Photonic‐Curing for Fully Printed Thermoelectric Generators
Mallick, M. M.; Franke, L.; Rösch, A. G.; Geßwein, H.; Long, Z.; Eggeler, Y. M.; Lemmer, U.
2022. Advanced Science, 9 (31), Art.Nr.: 2202411. doi:10.1002/advs.202202411
Realizing High Thermoelectric Performance of Bi-Sb-Te-Based Printed Films through Grain Interface Modification by an In Situ-Grown β-Cu2-δSe Phase
Mallick, M. M.; Franke, L.; Rösch, A. G.; Ahmad, S.; Geßwein, H.; Eggeler, Y. M.; Rohde, M.; Lemmer, U.
2021. ACS applied materials & interfaces, 13 (51), 61386–61395. doi:10.1021/acsami.1c13526
Fully printed origami thermoelectric generators for energy-harvesting
Rösch, A. G.; Gall, A.; Aslan, S.; Hecht, M.; Franke, L.; Mallick, M. M.; Penth, L.; Bahro, D.; Friderich, D.; Lemmer, U.
2021. npj flexible electronics, 5 (1), Article: 1. doi:10.1038/s41528-020-00098-1
Improved Electrical, Thermal, and Thermoelectric Properties Through Sample‐to‐Sample Fluctuations in Near‐Percolation Threshold Composite Materials
Rösch, A. G.; Giunta, F.; Mallick, M. M.; Franke, L.; Gall, A.; Aghassi-Hagmann, J.; Schmalian, J.; Lemmer, U.
2021. Advanced theory and simulations, 4 (6), Art.-Nr.: 2000284. doi:10.1002/adts.202000284
Shape-Versatile 3D Thermoelectric Generators by Additive Manufacturing
Mallick, M. M.; Franke, L.; Rösch, A. G.; Lemmer, U.
2021. ACS energy letters, 6, 85–91. doi:10.1021/acsenergylett.0c02159
High-Performance Ag–Se-Based n-Type Printed Thermoelectric Materials for High Power Density Folded Generators
Mallick, M. M.; Rösch, A. G.; Franke, L.; Ahmed, S.; Gall, A.; Geßwein, H.; Aghassi, J.; Lemmer, U.
2020. ACS applied materials & interfaces, 12 (17), 19655–19663. doi:10.1021/acsami.0c01676
New frontier in printed thermoelectrics: Formation of β-AgSe through thermally stimulated dissociative adsorption leads to high ZT
Mallick, M. M.; Rösch, A. G.; Franke, L.; Gall, A.; Ahmad, S.; Gesswein, H.; Mazilkin, A.; Kuebel, C.; Lemmer, U.
2020. Journal of materials chemistry / A, 8 (32), 16366–16375. doi:10.1039/D0TA05859A