Masterarbeit
Dreiphasige Leistungsfaktorkorrektur unter Nutzung der T-Type Topologie

Deine Challenge:
Um erneuerbare Energie in großen Maßstäben zu speichern, liegt es nahe diese in Wasserstoff (H₂) zu speichern. Für die Elektrolyse wird Gleichstrom benötigt. Direktes Gleichrichten aus dem Netz, z.B. über eine B6-Brücke, würde große Netzrückwirkungen erzeugen. Daher muss der Netzlaufnahmestrom sinusoidal sein.


Aktuell existieren Simulationen, die die Umsetzbarkeit der Lösung demonstrieren. Dies beinhaltet alle Schaltungsstelle und die Regelschleife.

Dein Profil:
- Du wirst Lösungen entwickeln, die Maßstäbe setzen.
- Du hast ein solides elektrotechnisches Grundverständnis.
- Idealerweise entwickelst Du auch gerne privat.
- Nachweisbare Erfahrungen im Platinentool (z.B. KiCad).
- Nachweisbare Erfahrungen in der Embedded Programmierung (AVR standalone, STM32, etc.), Idealerweise in der Leistungselektronik

Unser Angebot:
- Du wirst viel lernen, sowohl praktisch als auch theoretisch.
- Freies Arbeiten mit hohem Gestaltungsspielraum für eigene innovative Ideen.
- Gehalt (450 Euro)
- Privatprojekte möglich, kostenlose Getränke, Obstkorb, etc.

Über uns:
Digital Power Systems ist eine Ausgründung des KITs und entwickelt digitale, langlebige Leistungselektronik für eine Vielzahl von langlebigen, nachhaltigen Anwendungen.


Kurz & Knapp

Fachrichtung:
Elektrotechnik / Leistungselektronik
Master

Einstieg:
Jederzeit

Bewerbung:
Bewerbungen an:
Dr. Michael Heidinger
michael.heidinger@digitalpowersystems.eu