

Optische Systeme (8. Vorlesung)

Martina Gerken 11.12.2006

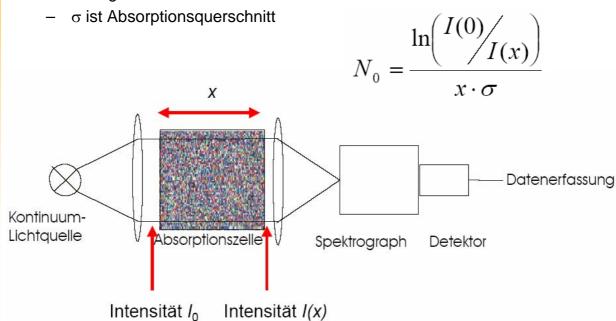
Universität Karlsruhe (TH)

Inhalte der Vorlesung

- 1. Grundlagen der Wellenoptik
- 2. Abbildende optische Systeme
- 3. Optische Messtechnik
 - 3.1 Spektroskopie
 - 3.2 Materialcharakterisierung
 - 3.3 Koordinatenmesstechnik (später)
- 4. Biomedizinische optische Systeme
- 5. Optische Materialbearbeitung (nächste Woche)
- 6. Optische Datenspeicherung
- 7. Optische Informationstechnik
- 8. Mikro- und Nanooptische Systeme

Charakterisierung von Lichtquellen

- · Zeichnen Sie das beobachtete Spektrum einer
 - Glühlampe
 - Leuchtstofflampe
- Welche Unterschiede gibt es zwischen dem beobachteten Spektrum und dem realen Spektrum?
 - Sensor Auge, Hellempfindlichkeit Auge müsste kalibriert werden, Farbintensitäten entsprechend verfälscht
 - Endliche Schlitzbreite verbreitert Spektrum
 - Gitter nicht optimal periodisch, dadurch Messfehler
 - CD könnte Teile des Lichtes absorbieren.
 - Schmale Linien nicht auflösbar
 - Subjektive Faktoren beeinflussen Messung
 - Keine Skala im Messaufbau, Fehler durch Vergleich mit Ausdruck
 - Endliche Ausleuchtung des Gitters
 - Pixelgröße des Auges
- Kalibrierung des Messsystems!
- Grenzen des Messsystems kennen!

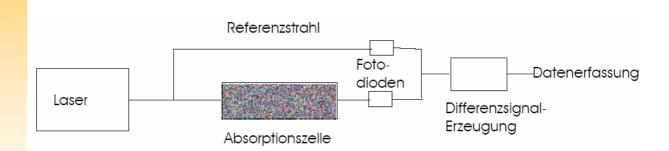


Inhalte der Vorlesung

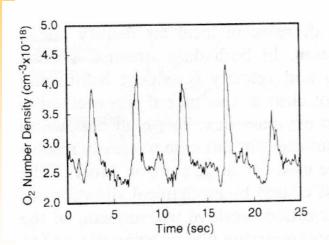
- 1. Grundlagen der Wellenoptik
- 2. Abbildende optische Systeme
- 3. Optische Messtechnik
 - 3.1 Spektroskopie
 - 3.2 Materialcharakterisierung
 - 3.3 Koordinatenmesstechnik (später)
- 4. Biomedizinische optische Systeme
- 5. Optische Materialbearbeitung (nächste Woche)
- 6. Optische Datenspeicherung
- 7. Optische Informationstechnik
- 8. Mikro- und Nanooptische Systeme

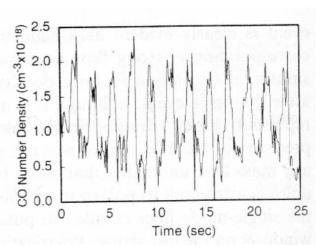
Absorptionsspektroskopie

- Konzentrationsmessung unter Verwendung des Lambert-Beer'schen Gesetzes
 - Annahme: Konzentration N₀ im sei im Nachweisvolumen r\u00e4umlich homogen verteilt



Quelle: http://www.tu-darmstadt.de/fb/mb/ekt/laser/Absorptionsspe_1.pdf

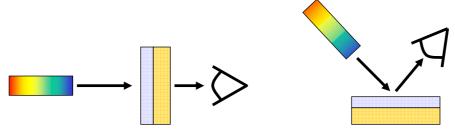

Absorptionslaserspektroskopie


- Wellenlänge wird mit abstimmbarem Laser durchgefahren
- Höhere Wellenlängenauflösung möglich

Beispiel: Gasanalyse

 Kontinuierliches in-situ Monitoring von CO und O₂ bei gepulster Brennstoff-Eindüsung

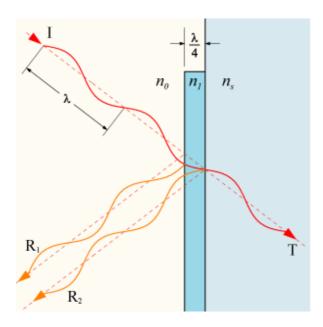
Quelle: http://www.tu-darmstadt.de/fb/mb/ekt/laser/Absorptionsspe_1.pdf


LTi

Interferenzspektroskopie

8.8

Dient der Charakterisierung dünner optischer Schichten


 Spektral aufgelöste Messung der Intensität von transmittierter oder reflektierter Strahlung

- Auswertung der Interferenzen ergibt Schichtdicke und komplexen Brechungsindex
 - Brechzahl n und Absorptionskoeffizient k sind abhängig von Wellenlänge

Antireflexschichten

- Ist Kohärenzlänge des Lichtes länger als Schichtdicke, treten Interferenzeffekte auf
- Antireflexschicht nutzt destruktive Interferenz in Reflexion
 - Für T=100%: R₁=R₂ und λ/2-Versatz

Quelle: http://de.wikipedia.org

Antireflexschicht-Berechnung

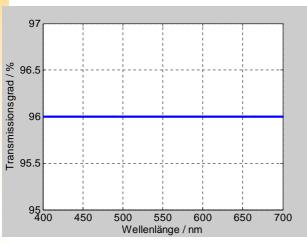
8.10

- Berechnung
 - π -Phasensprung (entspricht $\lambda/2$) bei Reflexion vom optisch dünneren zum optisch dichteren Material
 - Amplitudenreflexionskoeffizient (aus 2. Vorlesung)

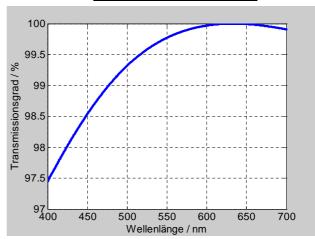
$$r_{\theta=0^{\circ},i,i+1} = \frac{n_i - n_{i+1}}{n_i + n_{i+1}}$$

Dünnste Antireflexschicht für λ und 0°:

$$\left|\frac{n_0 - n_{AR}}{n_0 + n_{AR}}\right|^2 = \left|\frac{n_{AR} - n_s}{n_{AR} + n_s}\right|^2 \implies n_{AR} = \sqrt{n_0 n_s}$$

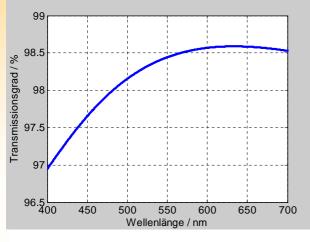

$$2 d_{AR} = \left(m + \frac{1}{2}\right) \frac{\lambda}{n_{AR}} \Rightarrow d_{AR} = \frac{\lambda}{4 n_{AR}}$$
 $m = 0; 1; 2; ... \text{ (Ordnung)}$

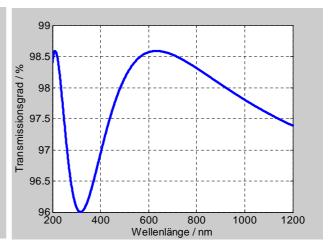
- T=100 % nur für bestimmte Wellenlängen
- Mehrschichtige Antireflexschichten für größeren Wellenlängenbereich


Ideale Antireflexschicht für Glas

- Übergang von Luft (n=1,0) zu Glas (n=1,5) bei 0°
- Ideale Antireflexschicht f
 ür λ=633 nm
 - n_{Ar} =1,22 und d_{Ar} =130 nm

Ohne AR-Schicht


Mit idealer AR-Schicht

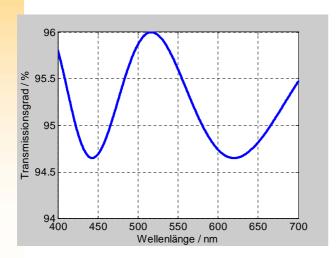


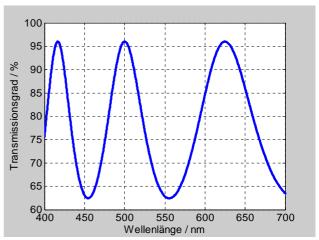
LTi

MgF₂ - Antireflexschicht für Glas

- Übergang von Luft (n=1,0) zu Glas (n=1,5) bei 0°
- MgF₂ Antireflexschicht f
 ür λ=633 nm
 - n_{MgF2} =1,38 und d_{MgF2} =115 nm
- Bei Wellenlängen mit konstruktiver Interferenz in Reflexion entspricht der Transmissionsgrad dem von Glas

(Stimmt nicht exakt mit Realität überein, da n_{MoF2} als konstant angenommen.)

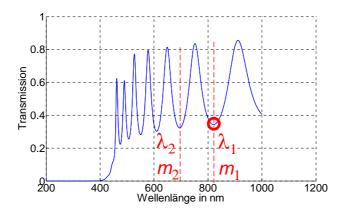

8.14


LTi

Schichten mit höherem Index auf Glas

- Schichtaufbau:
 - Luft (n=1,0)
 - 500 nm Schicht mit n=1,55
 - Glas (n=1,5)
- Rechnung bei 0°

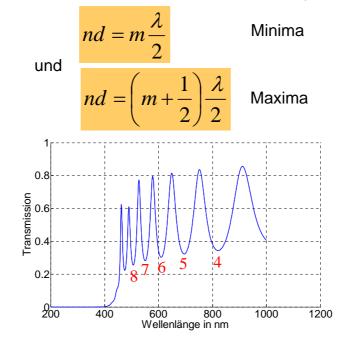
- Schichtaufbau:
 - Luft (n=1,0)
 - 500 nm Schicht mit n=2,5
 - Glas (n=1,5)
- Rechnung bei 0°



LTi

Interferenzspektroskopie: Bestimmung der Ordnung

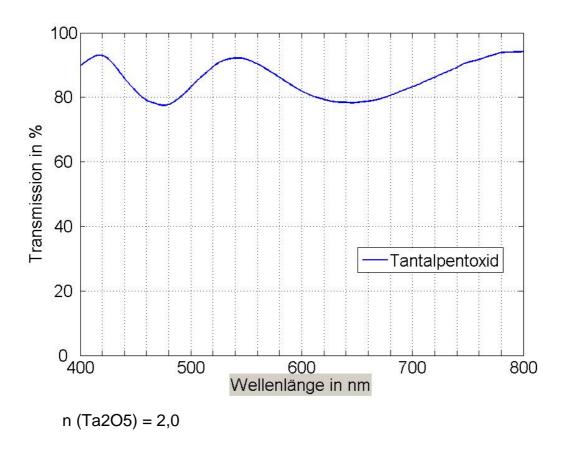
 Sehr gut anwendbar bei Transmissionsspektren, die von einer Absorptionskante bis in den transparenten Bereich eines Materials reichen und klar erkennbare Interferenzen zeigen


• Zunächst Ordnung eines Minimums weit weg von der Absorptionskante bestimmen mit

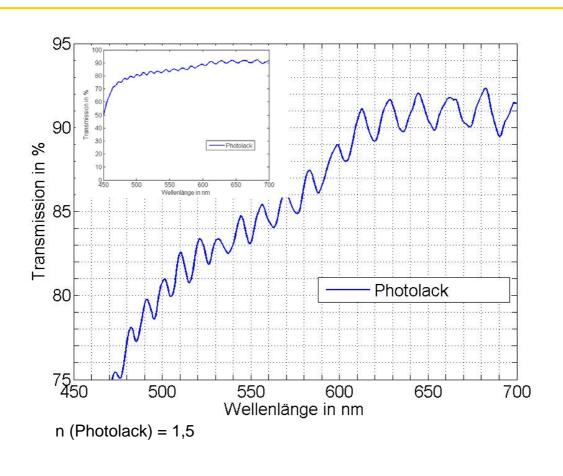
$$m_1 \frac{\lambda_1}{2} = (m_1 + 1) \frac{\lambda_2}{2} \Longrightarrow m_1 = \left[\frac{\lambda_2}{\lambda_1 - \lambda_2} \right]$$

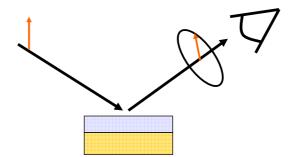
Interferenzspektroskopie: Bestimmung von d

- Dicke d f
 ür konstantes n aus λ und m berechnet
 - Für Schichten mit höherem Index als Substrat gilt:


 Brechungsindex kann über Transmissionsgrad der Minima ebenfalls berechnet werden

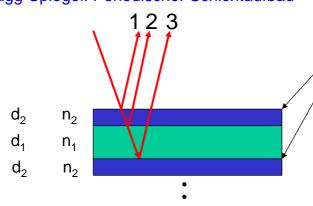
Gruppenarbeit: Schichtdicken bestimmen


- Berechnen Sie die Schichtdicke der Proben aus dem Spektrum!
- In welchem Wellenlängenbereich absorbieren die Proben?


Spektrum 2 - Optische Systeme - 11.12.2006

Einsatzbereich der Interferenzspektroskopie

- Schichten müssen ausreichend (optisch) dick sein (Richtwert nd > 300 nm), um einige Interferenzextrema zu zeigen
- Methode versagt beim Auftreten von schmalen Absorptionsbanden im Bereich der Messung
- Methode nicht geeignet für Schichten mit starker Absorption, wenn deshalb die Extrema nicht mehr klar erkennbar sind
- Alternative Methode: Ellipsometrie
 - Messung des Polarisationszustands von an der Oberfläche reflektierter Strahlung, auch unter Veränderung des Winkels



Dielektrischer Spiegel

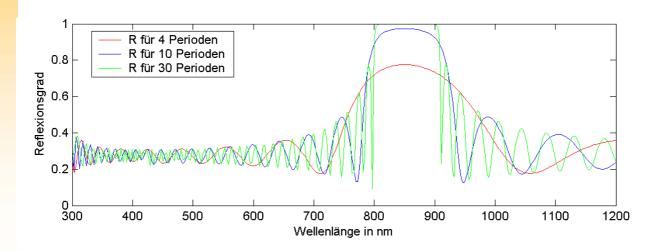
8.18

- Basiert auf Interferenz an mehreren dünnen Schichten
 - Insbesondere interessant für Hochleistungsanwendungen, da geringe Absorption möglich
- Bragg-Spiegel: Periodischer Schichtaufbau

Phasensprung λ/2 bei Reflexion vom optisch /dünneren zum optisch dichteren Material

("Face-Change ")

$$\frac{\lambda_0}{4} = d_1 n_1 = d_2 n_2$$


Konstruktive Interferenz von 1+2 (wie bei einzelner Schicht)

Konstruktive Interferenz von 2+3:

$$\Delta L = 2d_1 n_1 + \frac{\lambda_0}{2} = \frac{2\lambda_0 n_1}{4n_1} + \frac{\lambda_0}{2} = \lambda_0$$

Bragg-Spiegel

- · GaAs-AlAs-Braggspiegel auf einem GaAs-Substrat
 - d_{GaAs}= 61 nm und n_{GaAs}=3.5
 - d_{AIAs}=73 nm und n_{AIAs}=2.9
- Reflexionsgrad bei senkrechtem Einfall aus Luft für 4, 10 und 30 Perioden

Fragensammlung

- Wie kann ich das Spektrum einer Lichtquelle charakterisieren?
- Welche Faktoren limitieren die Auflösung eines Spektrometers?
- Was ist Absorptionsspektroskopie?
- Was ist Interferenzspektroskopie?
- Wie müssen der Brechungsindex und die Schichtdicke für eine Antireflexschicht gewählt werden?
- Skizzieren Sie das Transmissionsspektrum einer MgF₂-Schicht (n=1,38) auf Glas!
- Bei zwei gegebenen Spektren für Schichten auf Glas: Welche hat den höheren Brechungsindex? Welche hat die größere Dicke?
- Worauf basiert die Reflexion eines Bragg-Spiegels?