Course outline

1. Imaging optics
2. Optical sensors
 2.1 Spectroscopy
 2.2 Material characterization
 2.3 Distance measurement
 2.4 Angle measurement
 2.5 Optical mouse
3. Optics in data storage
4. Introduction to displays -> Presentation by BARCO (end of semester)
5. Fourier optics (starts 13.12.2007)
6. Diffractive optics and holograms
7. Integrated optics
8. Computerized imaging

Interferometric distance measurement

- Interferometer
 - Light split into at least two beams
 - Beams propagate different optical paths
 - Superposition of beams at exit
- Interference effect occur for coherent superposition
 - Interference pattern depends on optical path difference that beams incur before superposition.
- Precision measurement possible by evaluation of optical interference pattern
- Examples for interferometers

Newton's rings

- Newton's rings due to interference of light reflected on lens and light reflected on glass plate

Source: Naumann/Schröder, Bauelemente der Optik, 1992

Source: www.physik.uni-ulm.de

Fabry-Perot
Michelson
Mach-Zehnder

Without lens error
With lens error
6.5 White light interferometer
- Interference of broadband light source (white light) used
 - White light has small coherence
 - Interference phenomena only visible if optical length of both paths in interferometer identical within coherence length (~λ)
 - Object scanned in z-direction by movement relative to reference plane
- „Depth image“ of object with small measurement uncertainty generated
 - Setup needs to be very stable

Source: www.3d-shape.com

6.6 Time of flight distance measurement
- Emit laser pulse and determine time difference until detection of reflected pulse
- Calculation of distance using propagation velocity

\[\text{time-of-flight} \]

- Impuls aussenden
- Reflektion
- Echo empfangen

- Problem: Light is fast
 - Propagation time for distance of 1 m is 3 ns
- Short laser pulses and fast electronics necessary

6.7 LIDAR (Light Detection and Ranging)
- Compare to Radar:
 - Electromagnetic wave emitted and reflected signal analyzed

Source: http://www.dlr.de/schoollab/

6.8 LIDAR applications
- Coordinate measurement using time of flight
- Dynamics of gas turbulences by time of flight measurement and Doppler shift
- Chemical analysis (Pollutant concentration in atmosphere) by time of flight measurement and spectral measurement (Raman signal)

The LIDAR-derived DEMs are sufficiently detailed to recognize individual features such as trees and structures.

DEM: Digital elevation model
Raman Scattering

- **Raman signal provides fingerprint of molecules as vibrational states specific for chemical bonds**
 - Fingerprint region of organic molecules typically 500-2000 cm\(^{-1}\)
- In solid state physics Raman signal used to, e.g., characterize materials and measure temperature
- Difficulty is to separate weak Raman signal from background

![Raman Scattering Diagram](en.wikipedia.org)

LIDAR-System (Example Univ. Baltimore)

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser</td>
<td>Q-switched Nd-YAG with 320mJ at 1064nm (additional wavelengths: 532nm and 355nm); 30Hz repetition rate; 8ns pulse; 1.8 mrad beam divergence; BigSky laser model CFR 400</td>
</tr>
<tr>
<td>Telescope</td>
<td>25.4 cm (10 in) diameter, Cassegrain f/10, 5mrad FOV (Meade LX50)</td>
</tr>
<tr>
<td>Detector</td>
<td>IR-enhanced Si avalanche photodiode (Analog Modules)</td>
</tr>
<tr>
<td>Digitizer</td>
<td>12-bit 100MHz, dual channel (Signatec PDA 12)</td>
</tr>
<tr>
<td>Scanning system</td>
<td>Azimuth rotary stage (180:1), stepper motors & encoders, elevation right angle reducer (100:1), i.e. from 80° to -10°, AT6400 controller (CompuMotor)</td>
</tr>
<tr>
<td>Maximum range resolution</td>
<td>1.5m</td>
</tr>
<tr>
<td>Data acquisition</td>
<td>Pentium 133 MHz laptop</td>
</tr>
</tbody>
</table>

Distance Measurement by Contrast Evaluation

- Modification of objective position until image focused
- Reading of distance on objective scale
- Called contrast measurement as image contrast maximum in focus
- Auto-focus of digital camera works using contrast evaluation
 - Processor of camera calculates spatial frequency distribution of image
 - Image closer to focus if fraction of high frequencies larger
 - Multiple images with different focusing necessary to evaluate contrast
 - Alternatively, beam splitting may be used

![Distance Measurement Diagram](en.wikipedia.org)

Auto-focus using Astigmatic Imaging

- Illumination spot A imaged via objective and cylindrical lens astigmatically onto quadrant diode
- For correct focusing signals on x-diode and y-diode identical
- Setpoint tracing obtained from difference signal
 - Used in CD- und DVD-players

![Auto-focus Diagram](en.wikipedia.org)
Course outline

1. Imaging optics
2. Optical sensors
 2.1 Spectroscopy
 2.2 Material characterization
 2.3 Distance measurement
 2.4 Angle measurement
 2.5 Optical mouse
3. Optics in data storage
4. Introduction to displays -> Presentation by BARCO (end of semester)
5. Fourier optics (starts 13.12.2007)
6. Diffractive optics and holograms
7. Integrated optics
8. Computerized imaging

Angle measurement using collimator and telescope

- Collimator: Projector that images illuminated reticle to infinity
- Telescope with reticle used for evaluation
- Sensitive measurement of direction differences
- Setup insensitive vertical alignment (Parallel displacement)

Autocollimator

- Instrument combines collimator and telescope
 - Collimator reticle and telescope reticle both placed at focal plane of autocollimator objective

Example: Determination of track way profile

- Measurement of angle while slide moves
Alignment telescope

- Precision instruments for the alignment of objects to a reference line, which is defined by the line of sight of the system
- Alignment telescope focuses target to determine lateral displacement with regard to reference line
 - Setup insensitive against rotation

Adjustment of telescope axis

- Before use telescope axis needs to be aligned with track way
 - Adjust height to front target
 - Adjust direction to rear target
 - Repeat if necessary
- Identical procedure for adjustment of alignment laser with two iris apertures

Example: Evaluation of alignment

Course outline

1. Imaging optics
2. Optical sensors
 2.1 Spectroscopy
 2.2 Material characterization
 2.3 Distance measurement
 2.4 Angle measurement
 2.5 Optical mouse
3. Optics in data storage
4. Introduction to displays -> Presentation by BARCO (end of semester)
5. Fourier optics (starts 13.12.2007)
6. Diffractive optics and holograms
7. Integrated optics
8. Computerized imaging
6.21 Opto-mechanical mouse (since 1984)
- Direction obtained from time sequence of signals

6.22 Optical mouse (old – since 1968)
- Special pattern on mouse pad used for modulated reflection during movement

6.23 Optical mouse (new)
- Image scanned (as in digital camera) and displacement calculated

6.24 Examples for optical mouse systems
- Different systems:
 - Example of image from bottom

Source: http://www.howstuffworks.com
Source: http://www.howstuffworks.com
Source: http://www.mstarmetro.net/~rlowens/OpticalMouse/
6.25 Laser mouse (very new – since November 2004)

- Illumination with IR-laser
- Image taken with camera
- Movement of speckle-pattern evaluated

Figure 3: Interpreting differences in image fingerprints can be translated to movement of the mouse

6.26 What is speckle?

- Speckle (laser light-granulation) occurs upon reflection or transmission of coherent light on rough surfaces or distributed scatterers

6.27 Diffraction on grating

- Interference effect of large number N of scattering points k with fixed phase difference ϕ_k between 0..2\(\pi\)
- Each scattering point is origin of spherical wave. Waves superpose at observation point r

$$A(r) = \sum_{k=1}^{N} a_k e^{i\phi_k} \sqrt{N}$$

6.28 How does speckle form?

- Interference effect of large number N of scattering points k with random phase difference ϕ_k between 0..2\(\pi\)
- Each scattering point is origin of spherical wave. Waves superpose at observation point r

$$A(r) = \sum_{k=1}^{N} a_k e^{i\phi_k} \sqrt{N}$$
6.29 Speckle: influence of surface

- Speckle occurs if roughness of surface larger than wavelength of light

Observation point \(r \)

\[\text{coherent light} \]

\(\lambda \)

6.30 Speckle: influence of scattering particles

- Speckle occurs in transmission if scattering particles are distributed in volume with distance larger than wavelength of light
- Possible difference to scattering on surface:
 - Multiple scattering (random walk) increases effective roughness to more than layer thickness

Observation point \(r \)

\[\text{coherent light} \]

6.31 Problems caused by speckle

- Holograms
 - Besides desired object and reference wave speckle exists due to rough objects
- Laser projection displays
 - Roughness of projection screen causes speckle and blurred images
- Astronomy
 - Wave front are disturbed in atmosphere and limit resolution (“Seeing”)
- Wireless microphone
 - Lecturer with wireless microphone cannot be heard at certain position in auditorium (dead spots)
- Ultrasonic imaging
 - Granulated image due to speckle

6.32 Possibilities by using speckle

- Speckle metrology
 - Superposition of pattern 1 from measurement object and pattern 2 from reference object results in pattern 3 that depends on phase difference at given wavelength
 - Surface analysis by comparison to reference surface
Laser mouse

Figure 4: Laser uncovers surface features not detected by LED.

Glossy packaging (LED) Glossy packaging (Laser)

Whiteboard (LED) Whiteboard (Laser)

Laser mouse (very new – since November 2004)

- Other laser properties may be used as well
 - e.g., Philips Twin-Eye laser sensor: Input device based on laser Doppler effect

Source: http://www.business-sites.philips.com/lasersensors/about/article-15031.html

Course outline

1. Imaging optics
2. Optical sensors
3. Optics in data storage
 - 6.1 Copier and laser printer
 - 6.2 CD-/DVD-player
 - 6.3 Magneto-optical discs (MO), MiniDisc (MD)
4. Introduction to displays -> Presentation by BARCO (end of semester)
5. Fourier optics (starts 13.12.2007)
6. Diffractive optics and holograms
7. Integrated optics
8. Computerized imaging

Early data storage systems

- Data storage is used to save and distribute information independent of humans

- cuneiform writing
- cave-painting
- letterpress
- music box
Photocopyer
- 1938: Effect discovered by Carlson
- 1947: Technology licensed to Haloid
- 1949: First commercial photocopier
- 1961: Company was renamed from Haloid to Xerox

The first photocopy

Source: Xerox

Copying I

(1) CHARGE

DOCUMENT

PHOTORECEPTOR

DC VOLTAGE

(2) EXPOSE

TONER PARTICLES

PHOTORECEPTOR

(3) DEVELOP

Source: Borsenberger, "Organic Photoreceptors for Imaging Systems"

Copying II

(4) TRANSFER

Fuser Roller 150-200°C

Pressure Roller 40-80°C

(5) FIX

LAMP

(6) CLEAN

PHOTORECEPTOR

(7) ERASE

PHOTORECEPTOR

Source: Borsenberger

Image drum
- Core of copier is drum coated with photoconductor
- Photoconductor should have small dark conductivity and high photo sensitivity
- Photoconductor needs to be applied onto round or flexible substrates
- Until 1975 selenium mainly used, today organic semiconductor materials are used (see lecture "Plastic Electronics").

Photo courtesy of Xerox
Toner

- Toner consists of pigments, iron and resin
 - Pigments responsible for color, e.g., soot for black toner
 - Iron particles allow for sticking to electrically charged drum
 - Resin allows for “melting” toner onto paper in fuser

Photocopier (analog)

- Imaging of document onto drum using system of lenses and mirrors
- Exposure and development need to be in one instrument

Digital copier

- Digital copiers consist of two separate units, the scanner and the printer
- Document digitalized with scanner and saved in digitally (RAM or hard drive)
- Saved image transferred electronically to printer and usually printed with laser printer

Advantages and disadvantages of digital copying

- **Advantages**
 - Compact and cost-effective construction possible
 - Document may be copied several times without repeated exposure
 - Additional functionality such as print, fax, scan possible
 - Possibility of digital modification of copy before print

- **Disadvantages**
 - More likely noise on image
 - Grey increments worse
6.45 Exercise: Laser scanner unit

- Suggest a layout for the laser scanner unit!

6.46 Laser unit of laser printer

- Beam path not shown correctly, light reflects on edge of polygon mirror!

6.47 Laser printer

- Laser printer has printer part only
- Image on drum generated by exposure with laser (for LED-printers using row of LEDs).

6.48 Color laser printer

- Individual toner cartridge for each color (cyan, magenta, yellow and black) necessary
- Laser exposes drum or transfer band four times for each print – once for each color
Color laser printer: Inline-technique

- Individual drum for each color
- Sequential transfer of colors to paper
- Advantage is high print speed

![Inline-system diagram](source: www.druckerchannel.de)

Color laser printer: Revolver-technique

- Only one laser unit used
- Images of individual colors printed on transfer band
- When all colors are on transfer band, image transferred to paper
- Compact construction, but rather slow and loud

![Revolver-system diagram](source: www.druckerchannel.de)

Fuser

- At the end paper passes fuser rolls: Heat and pressure fuse toner into paper
 - One of the Teflon coated rolls is heated to about 200 degrees Celsius.
 - Other roll necessary for counter pressure
 - Heat and pressure melt toner particles and fixate them on paper
- Small bristles visible at paper ejection. These neutralize electrically charged paper to prevent sticking of pages.

![Fuser diagram](source: www.druckerchannel.de)

Course outline

1. Imaging optics
2. Optical sensors
3. Optics in data storage
 - 6.1 Copier and laser printer
 - 6.2 CD-/DVD-player
 - 6.3 Magneto-optical discs (MO), MiniDisc (MD)
3. Introduction to displays -> Presentation by BARCO (end of semester)
5. Diffractive optics and holograms
6. Integrated optics
7. Computerized imaging
Classification of data storage I

- **Mass storage:** Storage medium and access unit separate
- **"random-access"-storage:** Storage medium and access unit joined

Classification of data storage II

Mass storage
- One or more access units and information saved on one or more storage units
- Data access by positioning of access unit onto storage unit
- Data exchange using different physical transactions, e.g., mechanical, optical, magnetic fields, electric fields.
- Access times for HDD are a few milliseconds, for CD/DVD/MO ca. 100 milliseconds

"random-access"-storage
- Access using matrix of conductors. Storage medium located at cross points
- Data access by electrical addressing of rows and columns in random order
- Electronic data exchange.
- Access times of few nanoseconds.

Source: Waser, „Nanoelectronics and Information Technology“

How is data stored on CD?

- Digital data saved in continuous spiral on CD
- Data saved as bits in pits
- Height profile coated with reflective layer to increase intensity of reflected light

Sources: www.howstuffworks.com; www.physics.udel.edu/wwwusers/watson/scen103/ess-ccd.html

Fabrication of CD I

- Glass master fabricated by exposure of photo resist
- By galvanization (electrochemical process) 3-6 molds are fabricated

Sources: www.ee.washington.edu/consele/CE/kuhn/cdaudio/95x6.htm
Fabrication of CD II

- After two more galvanic molds resulting metal stampers ("Sons") used to fabricate CDs using inexpensive die casting in polycarbonate (1.2 mm).

- At the end surface is coated with metal (Ag, Al, Au, Cu 50-100 nm), and protective layer (1-30 µm). Label is applied.

Exercise: Layout of CD-player

- How does a CD-player work?
 - What are components 1 to 6?
 - What function do they have?

Circuit diagram for photodiode

- Tracking
- Data signal
- Auto focus

Layout of CD-player

- Optical beam path consists of laser diode, grating, polarizing prism, $\lambda/4$-waveplate, various lenses and photodetector.

Source: www.ee.washington.edu/conselec/CE/kuhn/cdaudio/95x6.htm

Source: hyperphysics.phy-astr.gsu.edu/hbase/audio/cdplay.html

Source: Imlau

Source: hyperphysics.phy-astr.gsu.edu/hbase/audio/cdplay.html
Reading data I

- The compact disc is 2 cm in diameter and 1.2 mm in thickness. The disc spins about 2 mm above the laser lens assembly.
- Data read by laser (780 nm) through polycarbonate-substrate.
 - Laser diameter at focus is 1.7 µm on reflective coating.
 - Beam enters through substrate with diameter of 0.8 mm. Thus, dust or small scratches have no influence.

Source: hyperphysics.phy-astr.gsu.edu/hbase/audio/cdplay3.html

Reading data II

- As all areas of CD are metal coated, reflectivity does not change with position.
- Signal due to constructive or destructive interference.
 - "Pits" (actually mounds) have depth of exactly 1/4 in polycarbonate.
 - 780 nm/(4*1.55)=125.8 nm.
 - Half the beam reflected from "Land" other half from "Pit" causes destructive interference in vertical direction due to 180° phase shift.
 - If beam completely reflected from "Land", constructive interference results.

Source: www.howstuffworks.com; hyperphysics.phy-astr.gsu.edu/hbase/audio/cdplay3.html

Reminder: Polarization

- Linearly polarized light is plane wave with fixed orientation of electric field.
- Circularly polarized light may be described by two plane waves with equal amplitudes and 90° phase difference.

Source: hyperphysics.phy-astr.gsu.edu/hbase/phyopt/polclas.html

Polarizing beam splitter

- Reflected light passes to photodetector and not back to laser diode due to polarizing beam splitter and 1/4-Wellenplatte.

Source: hyperphysics.phy-astr.gsu.edu/hbase/phyopt/polclas.html
Focusing of laser beam I

- Objective lens focuses laser beam onto active layer.
- Due to circular aperture beam exhibits Airy-pattern.
- Beam is diffraction limited.

\[\lambda = 780 \text{ nm} \]
\[n = 1.5 \]
\[NA = 0.45 \text{ (in air)} \]
\[d = 1.3 \times 10^{-6} \text{ m} \]
\[\delta = 7.7 \times 10^{-6} \text{ m} \]

Source: Imlau

Focusing of laser beam II

- As planarity of CD is ca. 50 µm and "Wobble" is ca. 100 µm continuous refocusing is necessary to prevent crosstalk.
- Focusing achieved with astigmatic lens (Combination of spherical objective lens and cylindrical lens in front of detector) and quadrant detector.

Source: www.ee.washington.edu/conselec/CE/kuhn/cdaudio/95x6.htm

Astigmatic lens combination

- Astigmatic lens combination causes only at correct spacing round shape.
- Quadrant detector used to analyze beam shape

Source: www.physics.udel.edu/%7Ewatson/scen103/cd-astig.html

CD too close

Source: www.ee.washington.edu/conselec/CE/kuhn/cdaudio/95x6.htm
6.69

CD too far

[Diagram of optical system]

Source: www.ee.washington.edu/conselec/CE/kuhn/cdaudio/95x6.htm

6.70

Autofocus

- Quadrant detector allows for simultaneous reading of data and generation of autofocus signal.
- Objective lens adjusted fast and precise with moving coil.

[Diagram of autofocusing mechanism]

Source: www.ee.washington.edu/conselec/CE/kuhn/cdaudio/95x6.htm

6.71

Rotation of CD

- Data on CD read with constant linear velocity of 1.3 m/s.
- Due to constant linear velocity, angular velocity needs to be reduced from 500 RPM on the inside to 200 RPM on the outside.

[Diagram of CD rotation and track]

Source: Waser: „Nanoelectronics and Information Technology”

6.72

Tracking I

- During reading of CD optical head needs to be kept on spiral track.
 - Accomplished with „Three-beam-tracking“.
- Grating generates side beams around main beam.

Sources: www.ee.washington.edu/conselec/CE/kuhn/cdaudio/95x6.htm; hyperphysics.phy-astr.gsu.edu/hbase/phyopt/photop/photopic/gratinghene2.jpg
6.73 Tracking II

- Side beams fall between data tracks and are measured with two extra detectors.

Source: www.ee.washington.edu/conselec/CE/kuhn/cdaudio/95x6.htm

6.74 Tracking III

- If signal intensity of side beams is equal, tracking is adjusted correctly.
- Tracking done with servo drives.

Source: www.physics.udel.edu/~watson/scen103/cd-tracking.html

6.75 How may the data density be increased?

- Data density given by:

\[
D_{2D} = \frac{\text{\#bits}}{\text{Area}}
\]

- Thus, bits should be chosen as small as possible for high data density.

- Resolution determines minimum size of bits:

\[
y_{\text{min}} = 1.22 \frac{\lambda}{2n \sin \alpha}
\]

- \(n \sin(\alpha) = \text{NA}\) is numerical aperture of objective (n=1, as objective in air).

- To achieve high data density, wavelength should be small and NA large!

Source: www.ee.washington.edu/conselec/CE/kuhn/cdaudio/95x6.htm

6.76 Comparison CD and DVD

- For DVD smaller wavelength and larger NA is used. Also number of layers is increased to increase data density.

Source: Waser: „Nanoelectronics and Information Technology“
6.77 DVD Formats

- Distance between double-layer layers: 55 +/- 15 µm

Source: Waser: "Nanoelectronics and Information Technology"

6.78 Comparison CD and DVD

<table>
<thead>
<tr>
<th></th>
<th>CD</th>
<th>DVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter</td>
<td>120 mm</td>
<td>120 mm</td>
</tr>
<tr>
<td>Thickness</td>
<td>1.2 mm</td>
<td>2 x 0.6 mm or 4 x 0.3 mm joint layers</td>
</tr>
<tr>
<td>Track distance</td>
<td>1.8 µm</td>
<td>0.74 µm</td>
</tr>
<tr>
<td>Width of pits</td>
<td>0.83 µm</td>
<td>0.40 µm</td>
</tr>
<tr>
<td>Laser wavelength</td>
<td>780 nm</td>
<td>650/635 nm</td>
</tr>
<tr>
<td>Data layers / sides</td>
<td>1/1</td>
<td>1/1 or 4.7 GB</td>
</tr>
<tr>
<td>Capacity</td>
<td>660 MB</td>
<td>8.5 GB or 9.4 GB</td>
</tr>
<tr>
<td></td>
<td>2/2 or 17 GB</td>
<td></td>
</tr>
</tbody>
</table>

NA = 0.45 to 0.6

Source: Waser: "Nanoelectronics and Information Technology"

6.79 Comparison CD - DVD - Blu-Ray

<table>
<thead>
<tr>
<th>CD</th>
<th>DVD</th>
<th>Blu-Ray</th>
</tr>
</thead>
<tbody>
<tr>
<td>λ = 780 nm</td>
<td>λ = 650 nm</td>
<td>λ = 405 nm</td>
</tr>
<tr>
<td>NA = 0.45</td>
<td>NA = 0.6</td>
<td>NA = 0.85</td>
</tr>
<tr>
<td>0.65 GBytes</td>
<td>4.7 GBytes</td>
<td>25 GBytes</td>
</tr>
</tbody>
</table>

© Philips Research

6.80 Writable CDs and DVDs

- The following categories are distinguished:
 - Prewritten CDs and DVDs are read-only
 - WORM (write once read many): may be written once and read many times, e.g., CD-R
 - R/W (read/write): may be written and read many times

- Most important criterion for writable CDs and DVDs is that they may be read in conventional CD- and DVD-players
 - As in conventional read-only CDs and DVDs the reflection properties need to be changed.
Methods for writable CDs/DVDs I

- a) Burning of holes in thin metal layer (e.g., Tellurium due to low melting point)

- b) Blister formation upon heating

Methods for writable CDs/DVDs II

- c) Thermo-plastic methods

- d) Change of texture

Methods for writable CDs/DVDs III

- e) Chemical change of dye layer -> used in CD-R

- e) Phase change from crystalline to amorphous -> used for DVD-R/W

CD-R: Tracking and Timing

- Pre-groove allows for tracking.
- Additionally pre-groove has “Wobble” superimposed, a 22.05 kHz sinusoidal deviation from track center with 30 nm amplitude. This allows for adjustment of writing speed.
6.85 DVD-R/W

- Rewritable DVDs based on reversible phase change of medium by heating with laser beam.

![Diagram of DVD-R/W](image)

-Waser: „Nanoelectronics and Information Technology“

6.86 Phase Change Media I

- X-ray diffraction shows different structure of amorphous and crystalline layer of Ge$_2$Sb$_2$Te$_5$.

![Graph of X-ray diffraction](image)

-Waser: „Nanoelectronics and Information Technology“

6.87 Phase Change Media II

- Amorphous and crystalline layer have different optical properties.
- Data may be coded by reflectivity.

![Graph of index of refraction](image)

-Waser: „Nanoelectronics and Information Technology“

6.88 DVD-R/W: Layer sequence

- Dielectric layers on both sides of active layer ensure maximum energy absorbance and protect active layer.
- Tracking and timing again by use of pre-groove with „wobble“.

![Diagram of DVD-R/W layer sequence](image)

-Waser: „Nanoelectronics and Information Technology“

www.digitaldrives.com/Sections/TechReferences/Sources/DVD-RW%20Standard
Course outline

1. Imaging optics
2. Optical sensors
3. Optics in data storage
 6.1 Copier and laser printer
 6.2 CD-/DVD-player
 6.3 Magneto-optical discs (MO), MiniDisc (MD)
4. Introduction to displays -> Presentation by BARCO (end of semester)
5. Fourier optics (starts 13.12.2007)
6. Diffractive optics and holograms
7. Computerized imaging

Magneto-Optical Discs (MOD), MiniDisc (MD)

- Data stored in small ferromagnetic domains that may be written and erased
 - Ferromagnetic domains are volume elements of homogeneous orientation and magnetization.
- Generation of domains by combination of light and magnetic field. Light heats material locally.
 - Principle of MOD investigated in 70th
 - Announced with CD in 1982
 - First commercial MOD in 1988

MOD: Reading

- Magneto-optical Kerr-effect (MOKE) causes slight rotation of polarization state of reflected compared to incident light (ca. 0.5°).
 - Sign depends on orientation of ferromagnetic domain
- Polarizer converts polarization modulation to amplitude modulation.

MOD: Writing

- For applied magnetic field larger than coercivity H_c change in domain orientation achieved
- In MODs materials are used whose H_c depends strongly on temperature.
 - At room temperature and heating by weak read laser beam, H_c should be large to keep data state.
 - Upon heating with intensive write laser beam, H_c should be small to write data with applied magnetic field.
MOD: Materials

- Only a magnetization orthogonal to layers may be read with typical reading configurations.
 - Most materials have orientation of domains parallel to layer (shape anisotropy FA)
 \[FA \approx \frac{1}{2} \mu_0 M_s^2 \]
 - Only materials with larger orthogonal anisotropy Ku than shape anisotropy FA may be used: \(Ku > FA \).
 - This is the case e.g. for Co. Co has small magnetization though.
 - Better is combination of several materials, e.g., TbFeCo.

Layer sequence of MOD

- Al-layer reflects light. Light passes TbFeCo-layer twice.
- \(\text{Si}_3\text{N}_4 \)-layer prevents water absorption in the TbFeCo-layer and serves as antireflective layer.

Comparison MO-disc and DVD-RAM

- 3,5” MO-Disk
 - At maximum 2,3 GB,
 - 16 EUR
 - Operating system recognizes MOD as hard drive
 - Higher physical data security
 - MOD insensitive to light
 - MOD insensitive to temperature up to ca. 100 °C
- DVD-RAM
 - 4,7 GB
 - 2,40 EUR
 - Faster data transfer
 - DVD-RAM-burner cheaper
 - DVD-RAM sometimes linked as DVD-burner

Compilation of questions

- Name three methods for optical distance measurements! Explain one in detail!
- For which distances may time-of-flight measurements be used?
- What is an autocollimator?
- How does an optical mouse work?
- When does speckle occur?
- How does a photocopier work?
- How does a laser printer work?
- Sketch and explain the laser scanner unit of a laser printer!
- What are differences between mass storage and "random-access"-storage?
- Sketch a CD-player and explain the individual components!
- How is the data coded on a CD?
- How is the laser beam kept on track during CD-reading?
- How may the data density be increased?
- Name three methods for realizing writable CDs!
- How is the data stored in an MOD?
- What are the parts of an MOD-player?
- Name an advantage of an MOD compared to a DVD-RAM!

Source: http://de.wikipedia.org