

LIDAR (Light Detection and Ranging)

Source: www.3d-shape.com

6.7

Compare to Radar: ٠

- Electromagnetic wave emitted and reflected signal analyzed

Echo empfangen

6.6

6.8

- Coordinate measurement using time of flight ٠
- Dynamics of gas turbulences by time of flight measurement and Doppler shift ٠

LIDAR applications

 Chemical analysis (Pollutant concentration in atmosphere) by time of flight measurement and spectral measurement (Raman signal)

Raman scattering

6.9

6.11

- Raman signal provides fingerprint of molecules as vibrational states specific for chemical bonds
 - Fingerprint region of organic molecules typically 500-2000 cm⁻¹
- In solid state physics Raman signal used to, e.g., characterize materials and measure temperature
- Difficulty is to separate weak Raman signal from background

Т

Distance measurement by contrast evaluation

- Modification of objective position until image focused
- Reading of distance on objective scale
- Called contrast measurement as image contrast maximum in focus
- Auto-focus of digital camera works using contrast evaluation
 - Processor of camera calculates spatial frequency distribution of image
 - Image closer to focus if fraction of high frequencies larger
 - Multiple images with different focusing necessary to evaluate contrast
 - Alternatively, beam splitting may be used

Source: Naumann/Schröder, Bauelemente der Optik, 1992

LIDAD System		Doltimoro)
LIDAR-System (Example Univ. I	Dailimore)

Laser	Q-switched Nd-YAG with 320mJ at 1064nm (additional wavelengths: 532nm and 355nm); 30Hz repetition rate; 8ns pulse; 1.8 mrad beam divergence; BigSky laser model CFR 400
Telescope	25.4 cm (10 in) diameter, Cassegrain f/10, 5mrad FOV (Meade LX50)
Detector	IR-enhanced Si avalanche photodiode (Analog Modules)
Digitizer	12-bit 100MHz, dual channel (Signatec PDA 12)
Scanning system	Azimuth rotary stage (180:1), stepper motors & encoders, elevation right angle reducer (100:1), i.e. from 90° to -10°, AT6400 controller (Compumotor)
Maximum range resolution	1.5m
Data acquisition	Pentium 133 MHz laptop

IT

Auto-focus using astigmatic imaging

- Illumination spot A imaged via objective and cylindrical lens astigmatically onto quadrant diode
- For correct focusing signals on x-diode and y-diode identical
- Setpoint tracing obtained from difference signal
 - Used in CD- und DVD-players

Source: Naumann/Schröder, Bauelemente der Optik, 1992

Course outline

1. Imaging optics

- 2. Optical sensors
 - 2.1 Spectroscopy
 - 2.2 Material characterization
 - 2.3 Distance measurement
 - 2.4 Angle measurement
 - 2.5 Optical mouse
- 3. Optics in data storage
- 4. Introduction to displays -> Presentation by BARCO (end of semester)
- 5. Fourier optics (starts 13.12.2007)
- 6. Diffractive optics and holograms
- 7. Integrated optics
- 8. Computerized imaging

lTi

6.13

Angle measurement using collimator and telescope

- Collimator: Projector that images illuminated reticle to infinity
- Telescope with reticle used for evaluation
- Sensitive measurement of direction differences
- Setup insensitive vertical alignment (Parallel displacement)

Source: Schröder, Technische Optik, 1990

6.16

ITi

Example: Determination of track way profile

• Measurement of angle while slide moves

Source: Schröder, Technische Optik, 1990

Source: http://www.howstuffworks.com

- Illumination with IR-laser •

- Image taken with camera •
- Movement of speckle-pattern evaluated •

Figure 3: Interpreting differences in image fingerprints can be translated to movement of the mouse

Source: http://www.logitech.com/lang/pdf/laser techbrief-04.pdf

coherent light

λ

Speckle (laser light-granulation) occurs upon reflection or transmission of • coherent light on rough surfaces or distributed scatterers

LT

How does speckle form?

- Interference effect of large number *N* of scattering points *k* with random phase difference φ_k between $0..2\pi$
- Each scattering point is origin of spherical wave. Waves superpose at observation point r

- Granulated image due to speckle

Toner

6.41

• Toner consists of pigments, iron and resin

- Pigments responsible for color, e.g., soot for black toner
- Iron particles allow for sticking to electrically charged drum
- Resin allows for "melting" toner onto paper in fuser

Photo courtesy of Xerox

- Document digitalized with scanner and saved in digitally (RAM or hard drive)
- Document digitalized with scanner and saved in digitality ((Chin of hard drive)
- Saved image transferred electronically to printer and usually printed with laser printer

Photocopier (analog)

- Imaging of document onto drum using system of lenses and mirrors
- Exposure and development need to be in one instrument

Source: www.compareindia.com/tips/photocopiers_components.htm

LT

Advantages and disadvantages of digital copying

Advantages

- Compact and cost-effective construction possible
- Document may be copied several times without repeated exposure
- Additional functionality such as print, fax, scan possible
- Possibility of digital modification of copy before print

Disadvantages

- More likely noise on image
- Grey increments worse

Source: www.druckerchannel.de

6.49 Color laser printer: Inline-technique

• Individual drum for each color

Т

- Sequential transfer of colors to paper
- Advantage is high print speed

Source: www.druckerchannel.de

ITi

Color laser printer: Revolver-technique

- Only one laser unit used
- Images of individual colors printed on transfer band
- When all colors are on transfer band, image transferred to paper
- Compact construction, but rather slow and loud

Source: www.druckerchannel.de

6.50

6.52

Course outline

1. Imaging optics

- 2. Optical sensors
- 3. Optics in data storage
 - 6.1 Copier and laser printer
 - 6.2 CD-/DVD-player
 - 6.3 Magneto-optical discs (MO), MiniDisc (MD)
- 3. Introduction to displays -> Presentation by BARCO (end of semester)
- 4. Fourier optics (starts 13.12.2007)
- 5. Diffractive optics and holograms
- 6. Integrated optics
- 7. Computerized imaging

www.physics.udel.edu/wwwusers/watson/scen103/less-cd.html

Source: www.ee.washington.edu/conselec/CE/kuhn/cdaudio/95x6.htm

0.6 mm

substrate

1.2 mm

substrate

200E4 2605/99 CD F01

0.1 mm cover / 1.1 mm

© Philips Research

substrate

- Most important criterion for writable CDs and DVDs is that they may be read in conventional CD- and DVD-players
 - As in conventional read-only CDs and DVDs the reflection properties need to be changed.

MOD: Materials

- Only a magnetization orthogonal to layers may be read with typical reading configurations.
 - Most materials have orientation of domains parallel to layer (shape anisotropy FA)

$$FA \approx \frac{1}{2} \mu_0 M_s^2$$

- Only materials with larger orthogonal anisotropy Ku than shape anisotropy FA may be used: Ku>FA.
 - This is the case e.g. for Co. Co has small magnetization though.
 - Better is combination of several materials, e.g., TbFeCo.

6.93

6.95

Layer sequence of MOD

- Al-layer reflects light. Light passes TbFeCo-layer twice.
- Si₃N₄-layer prevents water absorption in the TbFeCo-layer and serves as antireflective layer.

Waser: "Nanoelectronics and Information Technology"

Comparison MO-disc and DVD-RAM

- 3,5" MO-Disk
 - At maximum 2,3 GB,
 - 16 EUR
 - Operating system recognizes MOD as hard drive
 - Higher physical data security
 - · MOD insensitive to light
 - MOD insensitive to temperature up to ca. 100 °C

DVD-RAM

- 4,7 GB
- 2,40 EUR
- Faster data transfer
- DVD-RAM-burner cheaper
- DVD-RAM sometimes linked as DVD-burner

Source: http://de.wikipedia.org

LTi

Т

Compilation of questions

- Name three methods for optical distance measurements! Explain one in detail!
- For which distances may time-of-flight measurements be used?
- What is an autocollimator?
- How does an optical mouse work?
- When does speckle occur?
- How does a photocopier work?
- How does a laser printer work?
- Sketch and explain the laser scanner unit of a laser printer!
- What are differences between mass storage and "random-access"-storage?
- Sketch a CD-player and explain the individual components!
- How is the data coded on a CD?
- How is the laser beam kept on track during CD-reading?
- How may the data density be increased?
- Name three methods for realizing writable CDs!
- How is the data stored in an MOD?
- What are the parts of an MOD-player?
- Name an advantage of an MOD compared to a DVD-RAM!