METHOD TO MEASURE THE INNER ELECTRICAL VALUES OF A DBD INCLUDING SPACE CHARGE FIELD

Klaus Trampert, Mark Paravia, Wolfgang Heering

Light Technology Institute

measurement set up

advertising sign - 20 x 30 cm²

Xe- DBD characteristics

- simple construction
- mercury-free discharge
- every shape possible
- long lifetime

DBD

• flat discharge

electric characteristics

- dielectric isolation of plasma
- transient self restricted discharge
- direct measurement of internal values not possible
- high frequency signal in high voltage regions

method

- determination of inner values with the help of two additional capacitances
- Law of capacitance divider for C_{meas} and C_{barrier} \rightarrow V_{barrier} ~ V_{meas} ~ C_{meas}
- If $C_{couple} = C_{lamp}$ the displacement current of C_{lamp} and C_{couple} is equal $\rightarrow i_{plasma} \sim i_{lamp} - i_{couple}$

problems

- resonances between C_{lamp} and stray inductance of cable to lamp
- precise matching of $C_{lamp} = C_{couple}$ necessary precise knowledge of C_{barrier} necessary

electrical DBD model

equivalent electrical circuit

- dielectric barrier
- dielectric capacitance C_{barrier}
- discharge gap
 - vacuum capacity C_{gap}
- plasma impedance z_{plasma}

electrical values

- outer values
 - lamp voltage v_{lamp} lamp current i_{lamp}
- inner values
 - barrier voltage v_{barrier}
 - gap voltage v_{gap}
 - displacement current igap
 - plasma current i_{plasma}

impedance z_{plasma}

- nonlinear
- time dependent
- voltage dependent
- unknown memory effect due to the space charge!

 $i_{plasma} = \left(1 + \frac{C_{gap}}{C_{barrier}}\right) \cdot \left(i_{lamp} - i_{couple}\right) = \left(1 + \frac{C_{gap}}{C_{barrier}}\right) \cdot i_{difference}$

 $U_{\text{Excite}} = U_{\text{Gap}} - U_{\text{Charge}}$

space charge model

working hypothesis

- DBD = conservation of charges inside the gap
- centre of charge clouds near by the barrier at the beginning of ignition
- field between ions and electrons weakest the applied voltage V_{gap}

conclusions

- homogenous charge distribution

$$\rightarrow$$
 A_{electrode} = A_{charge}

- distance between ions Electrons
- \rightarrow d_{gap} = d_{charge}
- negligible polarisation
- $\rightarrow \varepsilon_{r; charge} = 1$

equivalent electrical circuit $C_{charge} = C_{gap}$ $Z_{plasma} = C_{charge} + Z_{excite}$

cinic **J**|||UJ

pulse

measured

- symmetrical bipolar excitation
- gap voltage \neq lamp voltage
- influence of space charge
- ignition at v_{gap, max}
- at low lamp voltage two ignitions per period
- ignition voltage not dependent from lamp voltage

- v_{charge} show the influence of space charges
- bipolar excitation causes accumulation of charges on the walls
- v_{excite} at ignition is supported by v_{charge} of last ignition bipolar ignition
- v_{excite} greater than v_{gap} at ignition
- problem of common ignition voltage definition

problem of common ignition voltage definition - $V_{ignition} = V_{gap, max}$ - V_{ignition} depends on memory effect of last ignition - second ignition at $v_{gap} = 0$ V in conflict with physical

- $V_{ignition} = V_{gap, max}$
- V_{ignition} depends on outer lamp voltage
- at higher v_{lamp} two or more ignitions per half period with increasing ignition voltage despite perionization effect
- ignition voltage of sinusoidal excitation up to a factor 2 smaller than at pulsed excitation

new definition of ignition voltage

- $V_{ignition} = V_{excite, max}$
- ignition voltage of first pulse independent of excitation
- right description of preionization effect
- ignition voltage in the same range as with pulsed excitation

500k

400k

300k

200k -

------ p_{Excite}

expectance

- no correlation between ignition an v_{gap} at reignition - no correlation between p_{gap} and ignition

new definition of ignition voltage

- $V_{\text{ignition}} = V_{\text{excite, max}}$
- time of $v_{\text{excite,max}}$ correlate with ignition in NIR (823 nm, 828 nm)
- v_{excite} in the same range as at sinusoidal excitation
- explanation of reignition with field of space charges
- p_{excite} has nearly no displacement component
- good correlation between p_{excite} and NIR emission

